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Nonperturbative zero modes in the Kraichnan model for turbulent advection

Omri Gat, Victor S. L’vov, Evgenii Podivilov, and Itamar Procaccia
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 22 January 1997!

The anomalous scaling behavior of thenth order correlation functionsFn of the Kraichnan model of
turbulent passive scalar advection is believed to be dominated by the homogeneous solutions~zero modes! of

the Kraichnan equationB̂nFn50. Previous analysis found zero modes in perturbation theory with respect to a
small parameter. We present a computer-assisted analysis of the simplest nontrivial case ofn53: we demon-
strate nonperturbatively the existence of anomalous scaling, and compare the results with the perturbative
predictions.@S1063-651X~97!51104-4#

PACS number~s!: 47.27.Gs, 05.40.1j, 47.10.1g, 47.27.Jv
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The Kraichnan model of turbulent passive scalar adv
tion @1# has attracted enormous attention recently@2–6# as a
nontrivial model of turbulent statistics in which the pheno
enon of multiscaling appears to be analytically derivab
The model describes an advected fieldT(r,t) satisfying the
equation of motion

]T~r,t !

]t
1u~r,t !•¹T~r,t !5k¹2T~r,t !1j~r,t !. ~1!

Herej(r,t) is a Gaussian white random force,k is the dif-
fusivity, and the driving fieldu(r,t) is chosen to have Gauss
ian statistics, and to be ‘‘fast varying’’ in the sense that
time correlation function is proportional tod(t). The statis-
tical quantities that one is interested in are the many p
correlation functions

F2n~r1 ,r2 , . . . ,r2n![^^T~r1 ,t !T~r2 ,t !•••T~r2n ,t !&&,
~2!

where double angular brackets denote an ensemble ave
with respect to the stationary statistics of the forcingand the
statistics of the velocity field. One of Kraichnan’s major r
sults @2# is an exact differential equation for this correlatio
function,

F2k(
a

¹a
21B̂2nGF2n~r1 ,r2 , . . . ,r2n!5~right-hand side!,

~3!

where the right-hand side is known explicitly, but does n
need to be written down here for reasons to be stated
mentarily. The operatorB̂2n[(a.b

2n B̂ab , whereB̂ab is de-
fined by

B̂ab[B̂~ra ,rb!5hi j ~ra2rb!]2/]r a,i]r b, j ; ~4!

the ‘‘eddy-diffusivity’’ tensorhi j (R) is given by

hi j ~R!5h~R!@~zh1d21!d i j2zhRiRj /R
2#,

andh(R)5H(R/L)zh, 0<zh<2. HereL is some character
istic outer scale of the driving velocity field. The scalin
properties of the scalar depend sensitively on the scaling
551063-651X/97/55~4!/3836~4!/$10.00
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ponentzh that characterizes theR dependence ofhi j (R), and
can take values in the interval@0,2#.

Now, an important point needs to be made. It was claim
that in the inertial interval one can neglect the Laplac
operators in Eq.~3!. Then it has been shown@3,4,6# that the
solutions of Eq.~3! for n.1 are dominated by the homoge
neous solutions~‘‘zero modes’’!. This means that deep in th
inertial interval the inhomogeneous solutions are negligi
compared to the homogeneous ones; we thus need to

sider the simpler homogeneous equationB̂2nF2n50.
Having exact differential equations forF2n allowed

Kraichnan to announce a mechanism for anomalous sca
@2#. Scaling implies that the physical solutions are scale
variant, in which case one may define a scaling~or homoge-
neity! exponent z2n of F2n by F2n(lr1 ,lr2•••lr2n)
5lz2nF2n(r1 ,r2•••r2n). One expects this to hold in the in
ertial range, i.e., over the range of scales, where the sep
tions r i j satisfyh!r i j!L, whereh andL are the inner and
outer scales, respectively. It is known@1# that such a solution
exists forF2 with z2522zh . If one can determine thes
exponents forn.1, one can understand, at least in th
simple model, what are the mechanisms for deviations fr
the predictions of dimensional analysis. In searching
methods for computing these exponents, two basic strate
have emerged. One strategy considered the differential e
tion in the ‘‘fully unfused’’ regime in which all the separa
tions between the coordinates are in the inertial range. T
even in the simplest case ofn52 the functionF4 depends on
six independent variables~for dimensionsd.2), and one
faces a formidable analytic difficulty to determine exact s
lutions. Accordingly, several groups have considered per
bative solutions in some small parameter, such aszh @3# or
the inverse dimensionality 1/d @4#. The rationale for this ap-
proach is that atzh50 andd→` one expects ‘‘simple scal
ing’’ with z2n5nz2. The exponentsz4 z2n have been com-
puted as a function ofzh near these simple scaling limits
The second approach considered the differential equatio
the ‘‘fully fused’’ regime, in which the correlation function
degenerates to the structure functio
S2n(R)5^^@T(r1R)2T(r)#2n&&. This method gives an
enormous simplification in having only one variable, but o
loses information in the process of fusion. The lost inform
tion was supplemented@2# by an as yet underived conjectur
R3836 © 1997 The American Physical Society
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55 R3837NONPERTURBATIVE ZERO MODES IN THE KRAICHNAN . . .
about the properties of conditional averages, leading t
closed-form calculation of the exponentsz2n for arbitrary
dimension and values ofzh . The results of the two strategie
are not in agreement. Although both numerical simulatio
@5# and experiments@7,8# lend support to the assumptio
used in the second strategy and to the resulting value
z2n , an important mystery remains as to why the two a
proaches reach such different conclusions. The aim of
paper is to explore nonperturbative calculations of the z
modes and their exponents. We will offer the first nonpert
bative demonstration of the existence of anomalous sca
in a homogenous equation for a correlation function.

Our strategy is to solve exactly, including eigenfunctio
the homogeneous equation satisfied by the third order co
lation functionF3(r1 ,r2 ,r3) in the isotropic sector. Note tha
in Kraichnan’s model all the odd-order correlation functio
F2n11 are zero due to symmetry under the transformat
T→2T. This symmetry disappears, for example@9#, if the
random forcej(r,t) is not Gaussian~but d correlated in
time!, in particular if it has a nonzero third order correlatio

D3~r1 ,r2 ,r3![E dt1dt2^j~r1 ,t1!j~r2 ,t2!j~r3,0!&. ~5!

With such a forcing the third order correlator is nonzero, a
it satisfies the equation

B̂3F3~r1 ,r2 ,r3!5D3 , B̂3[B̂121B̂131B̂23. ~6!

As this equation pertains to the inertial interval we have
glected the Laplacian operators. We also denotedD3
5 limrab→0D3(r1 ,r2 ,r3). The solution of this equation is
sum of inhomogeneous and homogeneous contributions,
below we study the latter. We will focus on scale invaria
homogeneous solutions that satisfyF3(lr1 ,lr2 ,lr3)
5lz3F3(r1 ,r2 ,r3). We refer to these as the ‘‘zero modes
the scale invariant sector.’’ We note that the scaling ex
nent of theinhomogeneousscale invariant contribution ca
be read directly from power counting in Eq.~6! ~leading to
z35z2). Any other scaling exponent can arise only fro
homogeneous solutions that do not need to balance the
stant right-hand side. In addition, note that scale-invari
zero modes arise not only due to the omission of the di
sive terms from Eq.~6!, but also as a result of the omissio
of the boundary conditions for large separations~at the outer
scaleL). The smooth connection to either small or lar
scales must ruin scale invariance at least at these scales
scale-invariant solutions of Eq.~6! live in a projective space
whose dimension is lowered by unity compared to the m
general form; these solutions do not depend on three sep
tions but rather on two dimensionless variables that are id
tified below. It will be demonstrated how boundary cond
tions arise in this space for which the operatorB̂3 is neither
positive nor self-adjoint.

Equation~6! is also invariant under the action of thed
dimensional rotation group SO(d), and under permutation
of the three coordinates. Here we seek solutions in the sc
representation of SO(d), where the solution depends only o
the three separationsr 12, r 23 and r 31. We transform
coordinates to the variablesx15ur22r3u2, x25ur32r1u2,
a
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x35ur12r2u2. The triangle inequalities in the original spac
are equivalent to the condition

2~x1x21x2x31x3x1!>x1
21x2

21x3
2 . ~7!

The advantage of the new coordinates is that the inequa
~7! describes a circular cone in thex1 , x2 , x3 space whose
axis is the linex15x25x3 and whose circular cross sectio
is tangent to the planesx150, x250, andx350. This cone
can be parametrized by three new coordinatess, r, f:

xn5s$12rcos@f1~2p/3!n#%,

~8!

0<s,`, 0<r<1, 0<f<2p.

The s coordinate measures the overall scale of the trian
defined by the originalr i coordinates, and configurations o
constantr andf correspond to similar triangles. Ther co-
ordinate describes the deviation of the triangle from the eq
lateral configuration (r50) up to the physical limit of three
collinear points attained whenr51; f does not have a
simple geometric meaning.

The transformation of the linear operatorB̂3 to the new
coordinates is straightforward, and produces a second o
linear partial differential operator in thes, r, f variables
~the full form of the operator is long and will not be give
here!. It suffices to note that the scale-invariant soluti
takes the formsz3/2f (r,f), and the transformed operator a
plied to this form gives an equation forf (r,f):

B̂3~z3! f ~r,f!5@a~r,f!]r
21b~r,f!]f

21c~r,f!]r]f

1u~r,f,z3!]r1v~r,f,z3!]f

1w~r,f,z3!# f ~r,f!50. ~9!

The new operatorB̂3 depends onz3 as a parameter and
acts on the unit circle described by the polarr,f coordi-
nates. The circle represents the projective space of the ph
cal cone described above.

The discrete permutation symmetry of the original Eq.~6!
leads to a symmetry of Eq.~9! with respect to the six elemen
group generated by the transformationf→f12p/3 ~cyclic
permutation of the coordinates in physical space! and
f→2f ~exchange of coordinates!. This symmetry extends
to a full U~1! symmetry in the two marginal cases ofzh50
and zh52 for which all the coefficients in Eq.~9! become
f independent. The coefficients in Eq.~9! all have a similar
structure, and, for example,a(r,f) reads

a~r,f!5(
n

@12rcos~f1 2
3pn!#~zh22!/2ã~r,f1 2

3pn!,

where ã(r,f) is a low order polynomial inr, cosf, and
sinf, which vanishes atr51,f50. We see that the coeffi
cients are analytic everywhere on the circle except at
three pointsr51, f52pn/3 wheren50,1,2. These points
correspond to the fusion of one pair of coordinates, and
coefficients exhibit a branch point singularity there. This s
gularity leads to a nontrivial asymptotic behavior of the s
lutions that had been described before in terms of the fus
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rules @6,11#. Note that forzh52 the singularity disappear
trivially. For zh50 there is also no singularity sinceã ex-
actly compensates for the inverse power.

The boundary conditions follow naturally when one re
izes thatB̂3 is elliptic for points strictly inside the physica
circle. On the other handB̂3 becomes singular on the boun
ary r51, where the coefficientsa(r,f) andc(r,f) vanish.
This singularity reflects the fact that this is the boundary
the physical region. It follows thatB̂3 restricted to the
boundary becomes a relation between the funct
f (r51,f)[g(f) and its normal derivative
]r f (r,f)ur51[h(f). The relation is bg91uh1vg8
1wg50. Solutions of Eq.~9! that do not satisfy this bound
ary condition are singular, with infiniter derivatives at
r51. Such solutions are not physical since they involve
finite correlations between the dissipation~second derivative
of the field! and the field itself when the geometry becom
collinear, but without fusion.

Given this homogeneous equation with homogene
boundary conditions we realize that nontrivial solutions
available only when det(B̂3)50. This determinant depend
parametrically onz3. Since the operator is defined on a com
pact domain we expect the determinant to vanish only
discrete values ofz3 for any given value ofzh and dimen-
sionality d. There always exists a trivial constant solutio
associated withz350. Our aim is to find the lowest lying
positive real valuesz3 for which the determinant vanishes

We approach the problem numerically by discretizing
operatorB̂3 including the boundary conditions, and solvin
the analogous problem for the discretized operator. Using
symmetry of the problem the domain was restricted to o
sixth of the circle, and a nine-point finite difference sche
defined for the evaluation of the second order derivativ
The discretized boundary conditions atr51 were imple-
mented with the same scheme. The symmetry implies
the new boundary conditions on the linesf50,p/3 are
simple Neuman boundary conditions]f f (r,f)50. After
discretization the problem transforms to a matrix eigenva
problemB3C50, whereB3 is a large sparse matrix, whos
rank depends on the mesh of the discretization, andC is the
discretizedf . We used NAG’s sparse Gaussian eliminati
routines to find the zeros of det(B3), and determined the
values ofz3 for these zeros as a function ofzh . The results
of this procedure for space dimensionsd52,3,4 are pre-
sented in Figs. 1, 2, and 3.

The various branches shown in Figs. 1-3 can be organ
on the basis of the perturbation theory of the type propo
into @3# nearzh50. We performed that type of analysis an
found that atzh50 the allowed values ofz3 are organized
into two sets,

z3
1~m,n!52~3m12n!,

~10!

z3
2~m,n!522~d2113m12n!,

where n andm are any non-negative integer. The lowe
lying positive values are 4,6,8, etc, whereas ford52 the
highest negative value is22. We see that the nonperturb
tive solution displays in all dimensions a branch~dashed
-
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line! that begins atzh50,z354 and ends atzh52,z350.
This branch is identical to the lowest lying positive bran
predicted by the perturbation theory. We computed the sl
of this branch nearzh50 in perturbation theory, and foun
that it is 2(22d)/(d21), in agreement with the numerics
Also the slopes of the other branches that begin atzh50
were obtained perturbatively and found to agree with
numerics. The negative branch~shown only ford52) never
rises above its perturbative limit and is not relevant for t
scaling behavior at any value ofzh . Note also that the poin
zh52,z350 appears to be an accumulation point of ma
branches, and we are not confident that all the branches t
were identified by our finite discretization scheme. Th
raises a worry about the availability of a smooth perturbat
theory aroundzh52. At least we expect such a perturbatio
theory to be very singular. Preliminary analytical work ind
cates that all branches meet the pointzh52,z350 with an
infinite slope.

The results of our nonperturbative approach lend supp
to the validity of the perturbative calculations of the ze

FIG. 1. The scaling exponentz3 as a functions ofzh found as
the loci of zeros of the determinant of the matrixB3, for d52.

FIG. 2. Same as Fig. 1, but ford53.
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55 R3839NONPERTURBATIVE ZERO MODES IN THE KRAICHNAN . . .
modes ofB̂4. The disagreement between the scaling ex
nentsz4 and the higher order exponentszn computed via the
perturbative approach and the predictions of the other
proach based on the fully fused theory cannot be ascribe
a formal failure of the perturbation theory. There are the
fore a few possibilities that have to be sorted out by furt
research:~i! The crucial assumption in the fully fused a
proach, the linearity of the conditional average of the Lapl

FIG. 3. Same as Fig. 1, but ford54.
,

E

-

p-
to
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r
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ian of the scalar, is wrong.~ii ! The perturbative approac

fails for B̂4 even though it succeeds forB̂3. ~iii ! The compu-
tation of the zero modes, which is achieved by discarding

diffusive terms inB̂n , is irrelevant for the physical solution
It is not impossible that the diffusive term acts as a singu
perturbation on some of the scale invariant modes.~iv!
Lastly, it is possible that the physical solution is not sca
invariant @12#. In other words, it is possible tha
F3(r1 ,r2 ,r3) is not a homogeneous function with a fixe
homogeneity exponentz3, but rather~for example! that z3
depends on the ratios of the separations~or, in other words,
the geometry of the triangle defined by the coordinates!. If
this were also the case for even correlation functionsF2n ,
this would open an exciting route for further research to u
derstand how non-scale-invariant correlation functions un
fusion become scale-invariant structure functions.

In light of the numerical results of Ref.@5# and the ex-
perimental results displayed in@7,8# we tend to doubt option
~i!. More work is needed to clarify the important riddle of th
contradiction between the two current approaches in
field.
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