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Nonperturbative zero modes in the Kraichnan model for turbulent advection
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The anomalous scaling behavior of théh order correlation functionsF, of the Kraichnan model of
turbulent passive scalar advection is believed to be dominated by the homogeneous s@atmnsodeksof
the Kraichnan equatiol%nj’-'n:O. Previous analysis found zero modes in perturbation theory with respect to a
small parameter. We present a computer-assisted analysis of the simplest nontrivial tass @fe demon-
strate nonperturbatively the existence of anomalous scaling, and compare the results with the perturbative
predictions[S1063-651X97)51104-4

PACS numbds): 47.27.Gs, 05.46:j, 47.10+g, 47.27.Jv

The Kraichnan model of turbulent passive scalar advecponent/,, that characterizes tHe dependence df;;(R), and
tion [1] has attracted enormous attention recefy6] as a  -4n, take values in the interviD, 2].
nontrivial model of turbulent statistics in which the phenom- o\ an important point needs to be made. It was claimed
enon of multiscaling appears to be analytically derlVablethat in the inertial interval one can neglect the Laplacian

The model describes an advected figld,t) satisfying the operators in Eq(3). Then it has been showi3,4,6] that the

equation of motion solutions of Eq(3) for n>1 are dominated by the homoge-
aT(r,t) neous solutiong§‘zero modes™). This means that deep in the
+u(r,t)-VT(r,t)=«V2T(r,t) + &r,t). (1) inertial interval the inhomogeneous solutions are negligible
compared to the homogeneous ones; we thus need to con-

Here &(r,t) is a Gaussian white random force,is the dif- ~ sider the simpler homogeneous equaty7>,=0.

fusivity, and the driving fieldi(r,t) is chosen to have Gauss-  Having exact differential equations fof, allowed

ian statistics, and to be “fast varying” in the sense that itsKraichnan to announce a mechanism for anomalous scaling
time correlation function is proportional t&(t). The statis- [2]- Scaling implies that the physical solutions are scale in-
tical quantities that one is interested in are the many poin¥ariant, in which case one may define a scaliaghomoge-

ot

correlation functions neity) exponent {5, of Fo, by Fon(Ari,Nra---Ars,)
=NnF, (r1,r,- - -T,). One expects this to hold in the in-
Fon(re, oy o o) ={T(ry, ) T(rp,t) - - - T(ran,1))), ertial range, i.e., over the range of scales, where the separa-

tionsr;; satisfy n<r;;<L, where» andL are the inner and

outer scales, respectively. It is knowh| that such a solution
where double angular brackets denote an ensemble averaggists for 7, with {,=2—¢,,. If one can determine these
with respect to the stationary statistics of the forcamgithe  exponents forn>1, one can understand, at least in this
statistics of the velocity field. One of Kraichnan’'s major re- Simp|e modeL what are the mechanisms for deviations from
sults[2] is an exact differential equation for this correlation the predictions of dimensional analysis. In searching for

function, methods for computing these exponents, two basic strategies
have emerged. One strategy considered the differential equa-
2,7 - ; tion in the “fully unfused” regime in which all the separa-
- + . =(right-h : . . L
K% Vaat Bon| Fan(l.f2, - - o) = (right-hand sidg, tions between the coordinates are in the inertial range. Then

€)) even in the simplest case of= 2 the function¥, depends on
six independent variable§or dimensionsd>2), and one
where the right-hand side is known explicitly, but does notfaces a formidable analytic difficulty to determine exact so-
need to be written down here for reasons to be stated mautions. Accordingly, several groups have considered pertur-
mentarily. The operatongnEzif;ﬁBaﬁ, whereBaB is de-  bative solutions in some small parameter, sucliag3] or
fined by the inverse dimensionality d/[4]. The rationale for this ap-
proach is that at,=0 andd—c one expects “simple scal-
Ba,eEB(ra,fﬁ)=hij(fa—rﬁ)ﬂzlﬁra,iﬁfg,j; (4)  ing” with {,=n¢,. The exponentg, {,, have been com-
puted as a function ofy, near these simple scaling limits.
the “eddy-diffusivity” tensorh;;(R) is given by The second approach considered the differential equation in
the “fully fused” regime, in which the correlation function
hi;(R)=h(R)[({h+d—1)6;;— {hRiR; /R?], degenerates to the structure function
Son(R)={({[T(r+R)—T(r)]>")). This method gives an
andh(R)=H(R/L)%, 0<(,<2. HereL is some character- enormous simplification in having only one variable, but one
istic outer scale of the driving velocity field. The scaling loses information in the process of fusion. The lost informa-
properties of the scalar depend sensitively on the scaling exion was supplementd@] by an as yet underived conjecture
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about the properties of conditional averages, leading to &,=|r,—r,|2. The triangle inequalities in the original space
closed-form calculation of the exponends, for arbitrary  are equivalent to the condition
dimension and values df,. The results of the two strategies
are not in agreement. Although both numerical simulations 2(X1Xp+ XoX3+ XgX1) =X3+ X5+ X5. (7)
[5] and experiment$7,8] lend support to the assumption
used in the second strategy and to the resulting values dfhe advantage of the new coordinates is that the inequality
{on, an important mystery remains as to why the two ap-(7) describes a circular cone in the, X,, X3 space whose
proaches reach such different conclusions. The aim of thigXis is the linex;=x,=X3 and whose circular cross section
paper is to explore nonperturbative calculations of the zerds tangent to the planes =0, x,=0, andx;=0. This cone
modes and their exponents. We will offer the first nonperturcan be parametrized by three new coordinates, ¢:
bative demonstration of the existence of anomalous scaling
in a homogenous equation for a correlation function. Xn=8{1-pcog ¢+ (27/3)n]},

Our strategy is to solve exactly, including eigenfunctions, (8)
the homogeneous equation satisfied by the third order corre-
lation functionF5(rq,r,,r3) in the isotropic sector. Note that

in Kraichnan’s model all the odd-order correlation functio.ns-l-he s coordinate measures the overall scale of the triangle
Tan+y Ar€ Zero due to sy_mmetry under the transformaﬂorbeﬁned by the originat; coordinates, and configurations of
T=>—T. This symm(_atry dlsappears, for exampé, if th? constantp and ¢ correspond to similar triangles. Theco-
rgndom forc'eg(r,t). IS not Gaussmr(bqt 6 correlated N ordinate describes the deviation of the triangle from the equi-
time), in particular if it has a nonzero third order correlation lateral configuration g=0) up to the physical limit of three
collinear points attained whep=1; ¢ does not have a
D3(r1,r2,r3)Ef dtydty(&(ry,t1)&(r2,t)é(r3,0)). (5 simple geometric meanlng. ) R
The transformation of the linear operatBg to the new
i ) ) ) coordinates is straightforward, and produces a second order
Wlth _su_ch a forcing t_he third order correlator is nonzero, andinear partial differential operator in ths, p, ¢ variables
it satisfies the equation (the full form of the operator is long and will not be given
R o herg. It suffices to note that the scale-invariant solution
B3 F3(rq,r2,13)=D3, Bz=Biot Bzt Bos. (6) takes the forns®??f(p, ¢), and the transformed operator ap-
plied to this form gives an equation féfp, ¢):
As this equation pertains to the inertial interval we have ne-
glected the Laplacian operators. We also denofesl 83(53)f(p,¢)=[a(p,¢)a§+ b(p,¢)a§,+ c(p,d)d,dy
=lim; _.oDs(r1.r2,r3). The solution of this equation is a
sum ofﬁinhomogeneous and homogeneous contributions, and TUlp.dila)dptulpd.ds)dy
below we study the latter. We will focus on scale invariant +w(p,b,¢3)1f(p,¢)=0. 9
homogeneous solutions that satisfyFz(Arq,Ary,AT3)
=N3F5(ry,15,r3). We refer to these as the “zero modes in The new operatoB; depends or/; as a parameter and it
the scale invariant sector.” We note that the scaling expoacts on the unit circle described by the potakp coordi-
nent of theinhomogeneouscale invariant contribution can nates. The circle represents the projective space of the physi-
be read directly from power counting in E() (leading to  cal cone described above.
{3=1{5). Any other scaling exponent can arise only from  The discrete permutation symmetry of the original E&).
homogeneous solutions that do not need to balance the cofeads to a symmetry of E¢9) with respect to the six element
stant right-hand side. In addition, note that scale-invariangroup generated by the transformatign- ¢+ 27/3 (cyclic
zero modes arise not only due to the omission of the diffupermutation of the coordinates in physical spa@nd
sive terms from Eq(6), but also as a result of the omission ¢— — ¢ (exchange of coordinatesThis symmetry extends
of the boundary conditions for large separatigassthe outer o a full U(1) symmetry in the two marginal cases &f=0
scaleL). The smooth connection to either small or largeand ¢,,=2 for which all the coefficients in Eq9) become
scales must ruin scale invariance at least at these scales. Theindependent. The coefficients in E@) all have a similar

scale-invariant solutions of E¢6) live in a projective space structure, and, for example(p, ¢) reads
whose dimension is lowered by unity compared to the most

general form; these solutions do not depend on three separa- ) (-2)17s )
tions but rather on two dimensionless variables that are iden-2(P:#)= 2 [1—pcod ¢+ 35mn)] a(p,¢+3mn),
tified below. It will be demonstrated how boundary condi-

tions arise in this space for which the operalaris neither ~ where@(p,¢) is a low order polynomial irnp, cosp, and
positive nor self-adjoint. sing, which vanishes ap=1,¢6=0. We see that the coeffi-
Equation(6) is also invariant under the action of tlile  cients are analytic everywhere on the circle except at the
dimensional rotation group S@), and under permutations three pointsp=1, ¢=2mn/3 wheren=0,1,2. These points
of the three coordinates. Here we seek solutions in the scalaorrespond to the fusion of one pair of coordinates, and the
representation of S@j, where the solution depends only on coefficients exhibit a branch point singularity there. This sin-
the three separations;», r,; and r3;. We transform gularity leads to a nontrivial asymptotic behavior of the so-
coordinates to the variables;=|r,—rs|?, x,=|rs—ry|2,  lutions that had been described before in terms of the fusion

Oss<x, Osp=sl, Os¢=27.
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rules[6,11]. Note that for{,=2 the singularity disappears g

trivially. For £,=0 there is also no singularity sin@e ex-

actly compensates for the inverse power. - d=2
The boundary conditions follow naturally when one real-

izes thatB; is elliptic for points strictly inside the physical

circle. On the other hanﬂ3 becomes singular on the bound-
ary p=1, where the coefficients(p, $) andc(p, ) vanish.
This singularity reflects the fact that this is the boundary of 3

the physical region. It follows thaf33 restricted to the

boundary becomes a relation between the function ggq

f(p=1,¢)=0(¢) and its normal derivative

3,f(p.¢)|,-1=h(¢). The relation is bg"+uh+vg’

+wg=0. Solutions of Eq(9) that do not satisfy this bound-

ary condition are singular, with infinite derivatives at

p=1. Such solutions are not physical since they involve in- -5.000 0*5 1'0 5 20

finite correlations between the dissipati@econd derivative ’ ’ ' Ch ’ ’

of the field and the field itself when the geometry becomes

collinear, but without fusion. FIG. 1. The scaling exponeif as a functions o, found as
Given this homogeneous equation with homogeneousne |oci of zeros of the determinant of the matBy, for d=2.

boundary conditions we realize that nontrivial solutions are

available only when deBs)=0. This determinant depends line) that begins at/,=0,{3=4 and ends at,=2,{3=0.

parametrically orn?;. Since the operator is defined on a com- This branch is identical to the lowest lying positive branch

pact domain we expect the determinant to vanish only apredicted by the perturbation theory. We computed the slope

discrete values of 5 for any given value of, and dimen- of this branch neat,=0 in perturbation theory, and found

sionality d. There always exists a trivial constant solutionthat it is 2(2—d)/(d—1), in agreement with the numerics.

associated witht3=0. Our aim is to find the lowest lying Also the slopes of the other branches that begirf,at 0

positive real valueg, for which the determinant vanishes. were obtained perturbatively and found to agree with the
We approach the problem numerically by discretizing thenumerics. The negative branéhown only ford=2) never

operatorés inc|uding the boundary ConditionS, and So|ving rises above its pel‘turbative limit and is not relevant for the
the analogous problem for the discretized operator. Using th&caling behavior at any value ¢f . Note also that the point
symmetry of the problem the domain was restricted to one{n=2.{3=0 appears to be an accumulation point of many
sixth of the circle, and a nine-point finite difference schemebranches, and we are not confident that all the branches there
defined for the evaluation of the second order derivativeswere identified by our finite discretization scheme. This
The discretized boundary conditions at=1 were imple- aises a worry about the availability of a smooth perturbative
mented with the same scheme. The symmetry implies thdheory around/,=2. At least we expect such a perturbation
the new boundary conditions on the lings=0,7/3 are theory to be very singular. Preliminary analytical work indi-
simple Neuman boundary condition,f(p,¢)=0. After ~ cates that all branches meet the pajpt=2,{3=0 with an
discretization the problem transforms to a matrix eigenvaludnfinite slope. .
problemB,;W=0, whereB; is a large sparse matrix, whose The results of our nonperturbative approach lend support
rank depends on the mesh of the discretization, ¥nid the 0 the validity of the perturbative calculations of the zero
discretizedf. We used NAG's sparse Gaussian elimination
routines to find the zeros of d&¢), and determined the 8.0
values of{5 for these zeros as a function &f. The results
of this procedure for space dimensiods-2,3,4 are pre-
sented in Figs. 1, 2, and 3.

The various branches shown in Figs. 1-3 can be organize
on the basis of the perturbation theory of the type proposed
into [3] near{,=0. We performed that type of analysis and
found that at,,=0 the allowed values of5 are organized 4.0
into two sets,

d 6.0 ¢

£5 (m,n)=2(3m+2n),
(10) 2.0

{5 (mn)=—2(d—1+3m+2n),

L 0.0
wheren and m are any non-negative integer. The lowest .

lying positive values are 4,6,8, etc, whereas @2 the
highest negative value is 2. We see that the nonperturba-
tive solution displays in all dimensions a bran@ashed FIG. 2. Same as Fig. 1, but fai=3.
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ian of the scalar, is wrongii) The perturbative approach

| fails for B, even though it succeeds 8. (ii) The compu-
tation of the zero modes, which is achieved by discarding the

diffusive terms inB,,, is irrelevant for the physical solution.
It is not impossible that the diffusive term acts as a singular
perturbation on some of the scale invariant mode@g)
Lastly, it is possible that the physical solution is not scale
invariant [12]. In other words, it is possible that
F5(rq,rs,r3) is not a homogeneous function with a fixed
homogeneity exponeni;, but rather(for example that {5
depends on the ratios of the separatiéms in other words,
the geometry of the triangle defined by the coordinatds
this were also the case for even correlation functigis,
this would open an exciting route for further research to un-
20 derstand how non-scale-invariant correlation functions under
fusion become scale-invariant structure functions.

In light of the numerical results of Ref5] and the ex-
FIG. 3. Same as Fig. 1, but far=4. perimental results displayed [,8] we tend to doubt option
(i). More work is needed to clarify the important riddle of the

. ) ) contradiction between the two current approaches in this
modes ofB,. The disagreement between the scaling expofig|q.

nents{, and the higher order exponers computed via the

perturbative approach and the predictions of the other ap- We thank Bob Kraichnan for useful suggestions and J-P.
proach based on the fully fused theory cannot be ascribed tBckmann and Z. Olami for discussions. This work was sup-
a formal failure of the perturbation theory. There are thereported in part by the U.S.-Israel BSF, the German-Israeli
fore a few possibilities that have to be sorted out by furthefFoundation, the Minerva Center for Nonlinear Physics and
researchi(i) The crucial assumption in the fully fused ap- the Naftali, and Anna Backenroth-Bronicki Fund for Re-
proach, the linearity of the conditional average of the Laplacsearch in Chaos and Complexity.
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